Selamat datang di blog kami

Selamat datang di blog kami, Smoga apa yang anda cari disini dapat ditemukan. Coba buka link kami dibawah ini.Smoga dapat membantu.

Senin, 24 Januari 2011

mengenal hard disk

Hardisk merupakan piranti penyimpanan sekunder dimana data disimpan sebagai pulsa magnetik pada piringan metal yang berputar yang terintegrasi. Data disimpan dalam lingkaran konsentris yang disebut track. Tiap track dibagi dalam beberapa segment yang dikenal sebagai sector. Untuk melakukan operasi baca tulis data dari dan ke piringan, harddisk menggunakan head untuk melakukannya, yang berada disetiap piringan. Head inilah yang selanjut bergerak mencari sector-sector tertentu untuk dilakukan operasi terhadapnya. Waktu yang diperlukan untuk mencari sector disebut seek time. Setelah menemukan sector yang diinginkan, maka head akan berputar untuk mencari track. Waktu yang diperlukan untuk mencari track ini dinamakan latency. 
hd6.jpg

Harddisk merupakan media penyimpan yang didesain untuk dapat digunakan menyimpan data dalam kapasitas yang besar. Hal ini dilatar belakangi adanya program aplikasi yang tidak memungkinkan berada dalam 1 disket dan juga membutuhkan media penyimpan berkas yang besar misalnya database suatu instansi.  Tidak hanya itu, harddisk diharapkan juga diimbangi dari kecepatan aksesnya. Kecepatan harddisk bila dibandingkan dengan disket biasa, sangat jauh. Hal ini dikarenakan harddisk mempunyai mekanisme yang berbeda dan teknologi bahan yang tentu saja lebih baik dari pada disket biasa.  Bila tanpa harddisk, dapat dibayangkan betapa banyak yang harus disediakan untuk menyimpan data kepegawaian suatu instansi atau menyimpan program aplikasi. Hal ini tentu saja tidak efisien. Ditambah lagi waktu pembacaannya yang sangat lambat bila menggunakan media penyimpanan disket konvensional tersebut.  

Sejarah Perkembangan Harddisk

 Harddisk pada awal perkembangannya didominasi oleh perusahaan raksasa yang menjadi standard komputer yaitu IBM. Ditahun-tahun berikutnya muncul perusahaan-perusahaan lain antara lain Seagate, Quantum, Conner sampai dengan Hewlet Packard’s di tahun 1992.  Pada awalnya teknologi yang digunakan untuk baca/tulis, antara head baca/tulisnya dan piringan metal penyimpannya saling menyentuh. Tetapi pada saat ini hal ini dihindari, dikarenakan kecepatan putar harddisk saat ini yang tinggi, sentuhan pada piringan metal penyimpan justru akan merusak fisik dari piringan tersebut.  

hd1.jpg 

Gambar 1 : Evolusi Teknologi Hardisk Menurut IBM


 Dari gambar tersebut dapat dilihat dari tahun 1984 sampai dengan 2006 mendatang, perkembangan teknologi penyimpanan data berkembang cepat. Mulai dari ukuran mikro untuk penggunaan laptop sampai ukuran normal untuk penggunaan PC Desktop.  

Trend Perkembangan HardDisk

 Trend perkembangan harddisk dapat kita amati dari beberapa karakteristik berikut :  
a. Kerapatan Data/Teknologi Bahan
 Merupakan ukuran teknologi bahan yang digunakan seberapa besar bit data yang mampu disimpan dalam satu satuan persegi. Dalam hal kerapatan data dari awal sampai sekarang terjadi evolusi yang sangat kontras. Pada awal perkembangannya kerapannya sekitar 0.004 Gbits/in2 tetapi pada tahun 1999 labortorium IBM sudah ada sekitar 35.3 Gbits/in2. Tetapi menurut www.bizspaceinfotech.com akan diperkenalkan apa yang dinamakan TerraBit density. Harddisk pada awal perkembangannya, bahan yang digunakan sebagai media penyimpan adalah iron oxide. Tetapi sekarang banyak digunakan media thin film. Media ini merupakan media yang lebih banyak menyimpan data dari pada iron oxide pada luasan yang sama dan juga sifatnya yang lebih awet.  

b. Struktur head baca/tulis

 Head baca/tulis merupakan perantara antara media fisik dengan data elektronik. Lewat head ini data ditulis ke medium fisik atau dibaca dari medium fisik. Head akan mengubah data bit menjadi pulsa magnetik dan menuliskannya ke medium fisik. Pada proses pembacaan data prosesnya merupakan kebalikannya.

  hd2.jpg 
Gambar 2 Desain karakteristik kebanyakan head baca/tulis  

Proses baca tulis data merupakan hal yang sangat penting, oleh karena itu mekanismenya juga perlu diperhatikan. Dalam pendahuluan sebelumnya terdapat perbedaan letak fisik head dalam operasinya. Dulu head bersentuhan fisik dengan metal penyimpan. Kini antara head dan metal penyimpan sudah diberi jarak. Bila head bersentuhan dengan metal penyimpan, hal ini akan menyebabkan kerusakan permanen fisik, head yang aus, tentu saja panas akibat gesekan. Apalagi teknologi sekarang kecepatan putar harddisk sudah sangat cepat. Selain itu teknologi head harddiskpun juga mengalami evolusi.  Evolusi head baca/tulis harddisk : Ferrite head, Metal-In-Gap (MIG) head, Thin Film (TF) Head, (Anisotropic) Magnetoresistive (MR/AMR) Heads, Giant Magnetoresistive (GMR) Heads dan sekarang yang digunakan adalah Colossal Magnetoresistive (CMR) Heads. Ferrite head, merupakan teknologi head yang paling kuno, terbuat dari inti besi yang berbentuk huruf U dan dibungkus oleh lilitan elektromagnetis. Teknologi ini diimplementasikan pada pertengahan tahun 1980 pada harddisk Seagate ST-251. Kebanyakan terdapat pada harddisk yang ukurannya kurang dari 50MB. Metal-In-Gap (MIG), merupakan penyempurnaan dari head Ferrite. Biasanya digunakan pada harddisk yang ukurannya 50MB sampai dengan 100MB. Thin Film (TF) heads, berbeda jauh dengan jenis head sebelumnya. Head ini dibuat dengan proses photolothografi seperti yang digunakan pada pembuatan prosessor.  (Anisotropic) Magnetoresistive (MR/AMR) Heads, head ini digunakan untuk membaca saja. Untuk penulisannya digunakan head jenis Thin Film. Diimplementasikan pada harddisk ukuran 1GB sampai dengan 30GB. Giant Magnetoresistive (GMR) Heads, merupakan penemuan dari peneliti Eropa Peter Gruenberg and Albert Fert. Digunakan pada harddisk ukuran besar seperti 75GB dan kerapatan tinggi sekitar 10 Gbits/in2 sampai dengan 15 Gbits/in2.
Karena teknologi Giant Magnetoresistive (GMR) mulai ditarik dari pasaran, sebagai penggantinya adalah Colossal Magnetoresistive (CMR).

Minggu, 23 Januari 2011

kehebatan core i7

Intel Corporation kembali menambah jajaran prosesornya setelah Senin kemarin meluncurkan Intel Core i7, seri Intel Core terbaru setelah prosesor Intel Core 2 Duo. Dinamakan i7 karena prosesor ini mengusung identifier i7, teknologi terbaru dari Intel. Intel Core i7 menjadi produk pertama dari beberapa prosesor dengan teknologi yang sama, yang akan diluncurkan hingga tahun depan. Seperti beberapa seri prosesor yang diluncurkan terdahulu, Intel Core i7 juga hadir dengan versi Extreme Edition. Produk ini menurut pihak Intel akan membawa performa tinggi pada komputer sekaligus membuatnya semakin hemat energi. Padahal biasanya jika performa semakin tinggi, kebutuhan energinya semakin besar. Intel Core i7 juga memiliki teknologi proses 45 Nanometer seperti Centrino 2. Proses 45 Nanometer ini akan menghasilkan kualitas tampilan gambar di monitor jauh lebih baik, seperti memutar video definisi tinggi. Dengan berbagai kelebihan itu, terutama fitur hemat energinya, prosesor ini tentu diperlukan oleh perusahaan yang sedang melakukan penghematan energi dalam pemakaian komputernya. Dengan kelebihan itulah Intel Corporation mengklaim Prosesor Intel Core i7 akan memperpanjang kepemimpinan mereka dalam teknologi prosesor laptop, desktop, dan perangkat server. “Merek ini akan menjadi pemimpin ke depan untuk teknologi prosesor PC,” kata Wakil Presiden Eksekutif sekaligus General Manager Sales and Marketing Group Intel Corporation Sean Maloney, yang disitat PC Magazine, Minggu (17/8/2008).
Untuk produk prosesor yang bakal menjadi andalannya ini, Intel membedakannya dalam dua warna logo. Logo berwarna biru untuk Prosesor Intel Core i7, dan hitam untuk Intel Core i7 Extreme Edition. Prosesor berbasis teknologi microarhitecture itu diharapkan mulai diproduksi pada kuartal keempat tahun ini. Di samping itu, perangkat ini akan memiliki fitur Intel Hyper-Threading yang mengusung teknologi multi-threading simultan. Pihak Intel belum memberi penjelasan teknis yang lengkap tentang produk anyarnya ini. Tetapi dalam situs PC Magazine disebutkan, prosesor ini memiliki dua hingga delapan cores (inti).
Intel Core i7 juga mempunyai Quick Path Interconnect, sistem antarkoneksi dengan proses berkecepatan tinggi, lebih dari 25 gigabit per detik, per-link. Dengan kemampuan kecepatan proses itu, Intel Core i7 yang mempunyai peranti AMD (Advanced Micro Devices) mutakhir menjadi pengontrol memori yang lebih terintegrasi. Kabarnya perusahaan raksasa tersebut baru akan memberi penjelasan rinci tentang produk ini pada ajang Intel Developer Forum yang diselenggarakan di San Fransisco pada 19 Agustus mendatang.
Selalu ada kebutuhan bagi kalangan overcloker yang ingin computer mampu bekerja lebih cepat. Sebelumnya ada isu bahwa Core i7 bakal menghadapi hambatan untuk overclocking. Intel baru saja merubah ide mereka. Core i7 940 dan 920 dapat menyesuaikan kecepatan multiplier memory. Tetapi sebelum bulan September ini selesai, Intel hanya menyediakan fitur setting multiplier memory hanya untuk Core i7 965XE atau seri extreme edition. Apa yang diperkirakan berubah untuk Core i7 940 dan 920. Memory sebelumnya diisukan hanya terkunci pada kecepatan 800/1066Mhz DDR3. Sekarang ada berita baru untuk Core i7 dapat menjalankan kecepatan memory diatas 1066Mhz. Produsen mainboard dapat merubah dari BIO, untuk meningkatkan kinerja memory. Selain perubahan dengan tersedianya setting multiplier memory, penguna board Core i7 dapat merubah kecepatan QPI. Sayangnya fitur setting QPI tidak terlalu berdampak besar. Masih menjadi pertanyaan, apakah Vcore dan Vdimm  bisa dilakukan setting secara terpisah. Melihat kecepatan memory DDR3 diatas 1066Mhz memerlukan power voltage lebih tinggi.

jenis jenis motherboard berdasarkan series

Jenis Motherboard Intel berdasarkan Series
Kategori Hardware
Berikut ini jenis-jenis mainboard atau motherboard yang dikeluarkan intel berdasarkan series.
Extreme Series
DEKTOP BOARDINTEL EXTREME CHIPSET SOCKETFORM FACTOR
DX5850
DP45SG
D5400XS
DX48BT2
X58 Express Chipset

P45 Exprss Chipset5400 Express Chipset
X48 Express Chipset
LGA1366
LGA775
LGA771
LGA775
ATX
ATX
eATX
ATX

Media Series
DEKTOP BOARDINTEL EXTREME CHIPSET SOCKETFORM FACTOR
DG45FC
DG45ID
DP35DP
G45 Express Chipset

G45 Exprss Chipset P35 Express Chipset
LGA775
LGA775
LGA775
mini-ITX
micro-ATX
ATX
Executive Series
DEKTOP BOARDINTEL EXTREME CHIPSET SOCKETFORM FACTOR
DQ43AP
DB43LD
DQ45CB
DQ45EK
DQ35MP
DQ35JO
Q43 Express Chipset

B43 Exprss ChipsetQ45 Express Chipset
Q45 Express Chipset
Q35 Express Chipset
Q35 Express Chipset
LGA775
LGA775
LGA775
LGA775
LGA775
LGA775
micro-ATX
micro-ATX
micro-ATX
mini-ITX
micro-ATX
micro-ATX

Classic Series
DEKTOP BOARDINTEL EXTREME CHIPSET SOCKETFORM FACTOR
DG43GT
DG41MJ
DG41TY
DG43NB
DP43TF
DG35EC
DG31PR
DG33BU
DG33FB
G43 Express Chipset

G41 Exprss Chipset G41 Express Chipset
G43 Express Chipset
P43 Express Chipset
G35 Express Chipset
G31 Express Chipset
G33 Express Chipset
G33 Express Chipset
LGA775
LGA775
LGA775
LGA775
LGA775
LGA775
LGA775
LGA775
LGA775
micro-ATX
mini-ITX
micro-ATX
ATX
ATX
micro-ATX
micro-ATX
micro-ATX
ATX

perkembangan prosesor INTEL dan AMD

Perkembangan teknologi prosesor begitu pesatnya akhir-akhir ini. Dalam setahun bisa muncul beberapa jenis prosesor yang baru.
Hal ini dipicu oleh
Pertama oleh tuntutan pengembangan itu sendiri
kedua oleh persaingan sengit antara 2 raksasa produsen prosesor, Intel dan AMD.
Sebagai orang awam, tentu kita tidak paham masalah-masalah teknis, itu adalah bagian orang IT. Tapi setidaknya kita harus tahu jenis prosesor apa saja yang ada saat ini, sehingga saat kita akan membeli komputer kita, sedikit banyak, tahu apa yang kita beli.
Intel vs AMD
Dari beberapa produsen prosesor, hanya ada 2 nama yang menguasai pasar, Intel dan AMD (Advance Micro Device). Bagi sebagian besar orang awam, malah hanya tahu satu nama, yaitu Intel. Bahkan ada yg hanya mengenal salah satu merk dagang dari Intel, yakni Pentium. Memang Pentium adalah nama prosesor Intel yg paling melegenda.
Bagi orang yg agak “mengerti” tetek bengek komputer, mungkin sudah kenal nama AMD. Tapi nama ini dipersepsikan sebagai prosesor yang murahan, panas, jelek dan imitasi dari prosesor Intel. Persepsi ini tdk bisa dipersalahkan 100%. Awalnya AMD memang hanya membuat prosesor dgn “menjiplak” teknologi Intel dan atas “restu” pihak Intel, tentu saja.
Namun, karena satu dan lain hal, terjadi persengketaan yg cukup sengit antara Intel dan AMD dan pengadilan mengharuskan AMD mengembangkan sendiri teknologi pembuatan prosesornya. Dari sejak itu, para engineer AMD terpaksa bekerja keras siang dan malam. Kucuran keringat mereka itu tidak sia². Setelah beberapa tahun “tirakat” di dalam laboratorium, mereka berhasil membuat prosesor yang bisa mengimbangi, bahkan dlm suatu periode waktu tertentu, mengungguli “guru”nya, dlm hal ini Intel, tentu saja. Namun harus diakui bahwa dalam bidang pemasaran AMD masih tertinggal jauh dari Intel, tetapi tidak dalam bidang teknologinya.
Jadi persepsi bahwa AMD itu murahan, jelek, panas, imitasi dan yg negatif² lainnya, saat ini sudah tidak berlaku lagi. Kita punya pilihan yang sama² mumpuni untuk prosesor, Intel atau AMD.
Adu Balap Kecepatan Prosesor
Dulu kinerja prosesor dilihat dari kecepatannya, yang diukur dengan satuan MHz (Mega Hertz) atau GHz (Giga Hertz). Produsen prosesor terus berlomba menciptakan prosesor dgn kecepatan tertinggi. Sejak jamannya Pentium 4 kecepatan prosesor sudah lebih dari 1.000 MHz sehingga mulai populer lah satuan GHz (1 GHz = 1.000 MHz) dalam mengukur kecepatan prosesor.
Perlombaan ini seakan tak ada batasnya, 2 GHz terlampaui, 3 GHz terlampaui. Sampailah pada suatu titik dimana mulai terjadi keterbatasan (limitasi) dlm meningkatkan kecepatan prosesor. Limitasi yg paling sulit diatasi adalah temperatur. Semakin cepat prosesor, semakin tinggi panas yang dihasilkan, semakin diperlukan sistem pendinginan yg lbh canggih. Limitasi lain adalah konsumsi daya, semakin cepat prosesor, semakin banyak pula energi yang dibutuhkan untuk menjalankannya. Efisiensi lalu menukik tajam. Pada titik ini, para perancang prosesor mulai menciptakan ajang adu balap yang baru, dlm hal ini adu kinerja dan efisiensi prosesor.
Adu Balap Kinerja Prosesor
Pihak pertama yg menyadari bahwa adu cepat, pada suatu titik, akan menjadi sebuah ke-sia²an adalah AMD. Mereka sadar akan sulit bersaing dengan Intel kalau mereka berpacu di lintasan balap yg sama. Mereka mengembangkan prosesor tdk lagi berbasis kecepatan tapi berbasis kinerja. Yang jadi ukuran bukan lagi tingkat kecepatan (speed rating) melainkan tingkat kinerja (perfromance rating). Dengan cerdik AMD menamai prosesornya tidak dengan kecepatan (berapa GHz) tapi dengan angka perfromance ratingnya. Dan tolok ukurnya juga mereka sendiri yg menentukan. Jadi orang akan sulit memperbandingkan apple to apple antara prosesor AMD dan Intel pada saat itu.
Contohnya, AMD mengeluarkan prosesor dgn kecepatan “hanya” 1.8 GHz, mereka memberi nama Athlon64 3000+. Angka 3000 secara tersamar mengacu ke angka 3 GHz. Mereka seakan hendak mengatakan bahwa Athlon64 3000+ (sekalipun kecepatannya hanya 1.8 GHz) memiliki kinerja mengimbangi prosesor (Intel) yg berkecepatan 3 GHz. Dan pada kenyataannya memang, lebih kurang, demikian.
Dengan kecepatan yg relatif rendah itu, maka panas yg dihasilkan tdk terlampau tinggi dan lbh hemat daya. Biaya produksinya pun bisa ditekan lbh rendah. Toh pada akhirnya para pengguna komputer tdk peduli berapa GHz kecepatan prosesornya, yang penting seberapa banyak output kinerjanya. Sesuai tidak dgn uang yg sdh mereka bayarkan.
Akhirnya , mau tak mau, Intel juga menganut filosofi yg sama. Mereka menamai prosesor dgn kode² huruf dan angka yg tidak mengacu lagi kepada kecepatan. Pentium D 631 adalah salah satu contohnya.
Prosesor Berinti Banyak
Ketika penggunaan komputer semakin meluas dan beragam, dituntut pula prosesor yang bisa mengerjakan beberapa tugas sekaligus. Sudah jamak sekarang ini orang mengetik laporan di komputer sekaligus mendengarkan musik dan pada saat yang sama dia sedang merubah (convert) file musiknya dari format CD ke format mp3 unt dipindah ke mp3 playernya. Istilahnya kerennya multi-tasking, mengerjakan beberapa hal sekaligus di satu komputer yg sama.
Pada komputer yg inti (core) prosesornya hanya satu (single core), hal ini memang masih bisa dikerjakan. Namum krn “otak”nya (core adalah otak dari prosesor) cuma 1 terpaksa bbrp tugas itu dikerjakan secara bergantian dan bergiliran. Untuk tugas² yg “ringan” seperti mendengarkan musik sambil mengetik surat, misalnya, prosesor single core masih mampu menanganinya tanpa si pengguna merasa “terganggu”. Tapi kalau tugas² itu cukup “berat” seperti converting file, main game 3D dsb, kadang terjadi lag atau program terhenti sejenak. Kalau mendengarkan musik, maka alunan suara akan terdengar putus². Itu tandanya prosesor sdh kewalahan menangani tugas yg ber-tumpuk².
Produsen prosesor merespons tuntutan para penggunanya dengan menciptakan prosesor yg memiliki lebih dari 1 core (multi core). Angka yg terdekat setelah 1 tentu saja 2. Maka lahirlah prosesor berinti 2 (dual core). Intel mulai dgn Pentium D (PD) dan AMD mulai dgn Athlon64 X2 (A64 X2).
Meskipun sama² memiliki 2 cores, secara prinsip keduanya berbeda arsitektur. PD menempatkan kedua coresnya dlm 2 chip yg berbeda sedangkan A64 X2 kedua cores berada dlm 1 chip.
Biar gampang kita umpamakan saja prosesor itu sebuah rumah. Lalu chip adalah kamar dan core adalah orang. Pada PD, dua orang itu menempati 2 kamar yg berbeda dlm 1 rumah itu. Otomatis krn kamarnya berbeda, untuk bisa saling komunikasi mereka harus memakai interkom atau telepon, misalnya. Sedang A64 X2 menempatkan kedua orang itu dlm 1 kamar sehingga komunikasi diantara keduanya jauh lbh mudah. Jadi PD memiliki 2 chip dlm 1 prosesor, sedang A64 X2 hanya punya 1 chip.
Istilah dual core jadi rancu ketika Intel mempromosikan PD sbg dual core, padahal pengertian sesungguhnya dari dual core adakah struktur yg dipakai di A64 X2. Sejatinya struktur PD lbh tepat disebut double core. Tapi okey lah, bagi kita orang awam tdk penting betul dual core atau double core.
Kemudian Intel meluncurkan prosesor yg real dual core dgn nama dagang Core® 2 Duo (C2D). Mereka ingin nama dagang Core bisa menggantikan Pentium, tapi rupanya konsumen masih menempatkan nama Pentium dalam top-of-mind mereka. Sulit unt melupakan Pentium. Akhirnya Intel meluncurkan juga Pentium Dual Core dgn serie E21xx. Nah, tambah membingungkan lagi kan, ada Pentium D yg diklaim dual core, ada C2D yg memang betul² dual core, lalu ada pula Pentium Dual Core E21xx. Yah, bahasa marketing memang kadang suka membuat bingung. Apalagi kalau marketingnya kelewat canggih kayak Intel.
Tapi secara hirarkis berdasar kinerjanya (pada speed yg sama), untuk prosesor Intel berinti 2 (biar tdk bingung antara double core dan dual core) adalah sebagai berikut
· C2D serie E8xxx
· C2D serie E6xxx
· C2D serie E4xxx
· Pentium Dual Core E21xx
· Pentium D
Sekarang sudah ada prosesor dengan 4 cores. Intel punya Core 2 Quadro (C2Q) sedang AMD punya Phenom X4. Memang persaingan di antara keduanya tdk pernah habis (dan semoga jangan sampai habis) karena dgn adanya persaingan maka teknologi akan semakin cepat berkembang. Konsekuensinya harus lbh sering ganti komputer, atau minimal upgrade, krn para pembuat perangkat lunak pun akan berlomba menggunakan teknologi perangkat keras yg telah tersedia di pasar. Siapkan dompet yg lebih tebal, terutama unt Anda yg selalu haus mencicipi teknologi terbaru
AMD Triple-Core
Amerika Serikat, 17 September 2007. Tiga core prosesor, mengapa tidak? Sepertinya itulah yang ada di benak para ahli di AMD. Kemarin baru saja AMD memberikan berita resmi bahwa awal tahun 2008 mereka akan meluncurkan prosesor baru dengan triple-core. Prosesor baru ini dimasukkan ke keluarga prosesor quad-core AMD (Phenom) yang rencananya dirilis tahun depan. Pada dasarnya prosesor triple-core ini menggunakan desain yang sama dengan quad-core, namun AMD “mematikan” satu core sehingga hanya tiga core yang berfungsi.
Bob brewer, corporate vice president of marketing and strategy dari AMD menjelaskan bahwa sampai saat ini penjualan prosesor quad-core masih sedikit dan belum banyak software yang mendukung optimalisasi empat core. Akan tetapi, banyak aplikasi dan pengguna yang menginginkan “sedikit tenaga lebih” dibandingkan prosesor dual-core, di sinilah prosesor triple-core mereka akan mengisi pasar.
Lebih lanjut Brewer mengaku bahwa kelahiran prosesor baru ini tidaklah direncanakan, namun efek dari proses produksi quad-core AMD yang baru. “Quad-core kami menggunakan desain yang berbeda dan lebih canggih (dari Intel), satu kesalahan kecil saja akan menghancurkan satu batch prosesor di proses produksi”. Prosesor dengan tiga core inilah yang kemudian muncul dari produksi quad-core AMD yang tidak berhasil lolos uji lab.
Belum diperoleh data yang akurat tentang gambaran kinerja prosesor triple-core AMD. Akan tetapi jike memuaskan, tampaknya AMD bisa menambah ceruk pasarnya di dunia prosesor, terutama bila perusahaan asal California ini pintar mematok harganya.
Prosesor Quad-Core Opteron
AMD memperkenalkan 4 prosesor Quad-Core AMD Opteron SE yang diklaim bakal membantu para manager TI dalam mengembangkan kemampuan datacenter mereka dalam rangka memenuhi kebutuhan komputasi di lingkungan perusahaan.
Dibandingkan investasi untuk proprietary hardware yang sangat mahal, prosesor produk ini dijanjikan bakal mempermudah perusahaan mengembangkan datacenter mereka dengan lebih mudah dan terjangkau ke server yang menawarkan fungsionalitas kelas enterprise pada harga standar.
Penambahan inti menjadi 4 socket dan 8 socket pada server x86 ini memungkinkan pengguna mendapatkan keuntungan terbaik dalam performa dan efisiensi, yang sangat penting untuk menangani aplikasi-aplikasi database dan virtualisasi.
Sistem Prosesor Quad-Core AMD Opteron SE akan tersedia dari perusahaan OEM Global dan penyedia solusi, termasuk Hewlett-Packard, Sun Microsystems, Dell dan IBM.
Prosesor Quad Core AMD Opteron dengan model 2360 SE (2,5 GHz), 2358 SE (2,4 GHz), 8360 SE (2,5 GHz) dan 8358 SE (2,4 GHz) telah tersedia dan telah mencatatkan rekor benchmark untuk performa di industri.

tentang fiber optic

1. Sejarah Perkembangan Fiber Optik
Pada tahun 1880 Alexander Graham Bell menciptakan sebuah sistem komunikasi cahaya yang disebut photo-phone dengan menggunakan cahaya matahari yang dipantulkan dari sebuah cermin suara-termodulasi tipis untuk membawa percakapan, pada penerima cahaya matahari termodulasi mengenai sebuah foto-kondukting sel-selenium, yang merubahnya menjadi arus listrik, sebuah penerima telepon melengkapi sistem. Photophone tidak pernah mencapai sukses komersial, walaupun sistem tersebut bekerja cukup baik.
Penerobosan besar yang membawa pada teknologi komunikasi serat optik dengan kapasitas tinggi adalah penemuan Laser pada tahun 1960, namun pada tahun tersebut kunci utama di dalam sistem serat praktis belum ditemukan yaitu serat yang efisien. Baru pada tahun 1970 serat dengan loss yang rendah dikembangkan dan komunikasi serat optik menjadi praktis (Serat optik yang digunakan berbentuk silinder seperti kawat pada umumnya, terdiri dari inti serat (core) yang dibungkus oleh kulit (cladding) dan keduanya dilindungi oleh jaket pelindung (buffer coating)). Ini terjadi hanya 100 tahun setelah John Tyndall, seorang fisikawan Inggris, mendemonstrasikan kepada Royal Society bahwa cahaya dapat dipandu sepanjang kurva aliran air. Dipandunya cahaya oleh sebuah serat optik dan oleh aliran air adalah peristiwa dari fenomena yang sama yaitu total internal reflection. Teknologi serat optik selalu berhadapan dengan masalah bagaimana caranya agar lebih banyak informasi yang dapat dibawa, lebih cepat dan lebih jauh penyampaiannya dengan tingkat kesalahan yang sekecil-kecilnya. Informasi yang dibawa berupa sinyal digital, digunakan besaran kapasitas transmisi diukur dalam 1 Gb.km/s yang artinya 1 milyar bit dapat disampaikan tiap detik melalui jarak 1 km. Berikut adalah beberapa tahap sejarah perkembangan teknologi serat optik :
• Generasi Pertama ( mulai tahun 1970)
-Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya terdiri dari :
• Encoding : Mengubah input (misal suara) menjadi sinyal listrik.
• Transmitter : Mengubah sinyal listrik menjadi gelombang cahaya termodulasi, berupa LED dengan panjang gelombang 0,87 μm.
• Serat Silika : Sebagai pengantar gelombang cahaya.
• Repeater : Sebagai penguat gelombang cahaya yang melemah di jalan
• Receiver : Mengubah gelombang cahaya termodulasi menjadi sinyal listrik, berupa foto-detektor
• Decoding : Mengubah sinyal listrik menjadi ouput (misal suara)
Repeater bekerja dengan merubah gelombang cahaya menjadi sinyal listrik kemudian diperkuat secara elektronik dan diubah kembali menjadi gelombang cahaya.
-Pada tahun 1978 dapat mencapai kapasitas transmisi 10 Gb.km/s.
• Generasi Ke- Dua ( mulai tahun 1981)
-Untuk mengurangi efek dispersi, ukuran inti serat diperkecil.
-Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias inti.
-Menggunakan diode laser, panjang gelombang yang dipancarkan 1,3 μm.
-Kapasitas transmisi menjadi 100 Gb.km/s.
• Generasi Ke- Tiga ( mulai tahun 1982)
-Penyempurnaan pembuatan serat silika.
-Pembuatan chip diode laser berpanjang gelombang 1,55 μm.
-Kemurniaan bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 μm sampai 1,6 μm
-Kapasitas transmisi menjadi beberapa ratus Gb.km/s.
• Generasi Ke- Empat ( mulai tahun 1984)
-Dimulainya riset dan pengembangan sistem koheren, modulasinya bukan modulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi, maka jarak yang dapat ditempuh, juga kapasitas transmisinya, ikut membesar.
-Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung (modulasi intensitas).
-Terhambat perkembangannya karena teknologi piranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal.
• Generasi Ke- Lima ( mulai tahun 1989)
-Dikembangkan suatu penguat optik yang menggantikan fungsi repeater pada generasi-generasi sebelumnya.
-Pada awal pengembangannya kapasitas transmisi hanya dicapai 400 Gb.km/s tetapi setahun kemudian kapasitas transmisinya sudah menembus 50.000 Gb.km/s
• Generasi Ke- Enam
-Pada tahun 1988 Linn F. Mollenauer mempelopori sistem komunikasi optik soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen panjang gelombang yang berbeda hanya sedikit dan juga bervariasi dalam intensitasnya.
-Panjang soliton hanya 10-12 detik dan dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing).
-Eksprimen menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing membawa informasi dengan laju 5 Gb/s. Kapasitas transmisi yang telah diuji mencapai 35.000 Gb.km/s.
-Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi, sehingga soliton tidak melebar pada waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapat diabaikan.
2. Definisi Fiber Optik
Dewasa ini dengan perkembangan teknologi komputer yang semakin pesat maka perkembangan jaringan komputer pun dituntut juga untuk mengikuti perkembangan teknologi tersebut, dan dalam membangun sebuah link atau hubungan sebuah workstation atau server tidak akan dapat berfungsi apabila peralatan tersebut tidak terhubung secara fisik, hubungan tersebut dalam Lan dikenal sebagai media transmisi yang umunya berupa kabel dan yang akan kami bahas adalah salah satu media transmisi yaitu kabel fiber optik.
Dalam jaringan dikenal 3 jenis kabel yaitu:
1. Kabel Twisted Pair
•Kabel ini terbagi dua, yaitu Shielded Twisted Pair dan Unshielded Twisted
Pair(UTP)
•Lebih banyak dikenal karena merupakan kabel telpon
•Relatif murah
•Jarak yang pendek
•Mudah terpengaruh oleh gangguan
•Kecepatan data yang dapat didukung terbatas, 10-16 Mbps
2. Kabel Coaxial
•Umumnya digunakan pada televisi
•Jarak yang relatif lebih jauh
•Kecepatan pengiriman data lebih tinggi di banding Twisted Pair, 30 Mbps
•Harga yang relatif tidak mahal
•Ukurannya lebih besar dari Twisted Pair
(www.y3dips.echo.or.id/artikel/ez-jaringan_bag1.txt)
3 .Kabel Fiber Optic
•Jarak yang jauh
•Kecepatan data yang tinggi, 100 Mbps
•Ukuran yang relatif kecil
•Sulit dipengaruhi gangguan
•Harga yang relatif masih mahal
•Instalasi yang relatif sulit
Fiber optik itu sendiri adalah kabel yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain.Cahaya yang ada di dalam serat optik sulit keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara. Sumber cahaya yang digunakan adalah laser karena laser mempunyai spektrum yang sangat sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi. Saat ini koneksi telepon internasional dan nasional telah menggunakan fiber optik. Tak lama lagi FO akan merubah cara kita menonton TV, menerima dan menggunakan informasi.
Fiber optik dapat dibagi menjadi 3:
1. Single mode: serat optik dengan core yang sangat kecil, diameter mendekati panjang gelombang sehingga cahaya yang masuk ke dalamnya tidak terpantul-pantul ke dinding cladding.
2. Multi mode step index: serat optik dengan diameter core yang agak besar yang membuat laser di dalamnya akan terpantul-pantul di dinding cladding yang dapat menyebabkan berkurangnya bandwidth dari serat optik jenis ini.
3. Multimode grade index: serat optik dengan diameter core yang besar dan mempunyai cladding yang bertingkat indeks biasnya sehingga dapat menambah bandwidth jika dibandingkan dengan Multimode step indek.
3. Struktur dan Cara Kerja Fiber Optik
Kira-kira lebih dari 20 tahun yang lalu, kabel serat optik (Fiber Optic) telah memngambil alih dan mengubah wajah teknologi industri telepon jarak jauh maupun industri automasi dengan pengontrolan jarak jauh. Serat optik juga memberikan peranan besar membuat Internet dapat digunakan di seluruh dunia.
Ketika serat optik menggantikan tembaga (copper) sebagai long distance calls maupun internet traffic yang secara tidak langsung berdampak pd penurunan biaya produksi. Untuk memahami bagaimana sebuah kabel serat optik bekerja, sebagai contoh coba bayangkan sebuah sedotan plastik atau pipa plastik panjang fleksible berukuran besar. Bayangkan pipa tersebut mempunyai panjang seratus meter dan anda melihat kedalam dari salah satu sisi pipa. Seratus meter di sebelah sana seorang teman menghidupkan lampu senter dan diarahkan kedalam pipa.
Dikarenakan bagian dalam pipa terbuat dari bahan kaca sempurna, maka cahaya senter akan di refleksikan pada sisi yang lain meskipun bentuk pipa bengkok atau terpilin masih dapat terlihatpantulan cahaya tersebut pada sisi ujungnya. Jika misalnya seorang teman anda menyalakan cahaya senter hidup dan mati seperti kode morse, maka anda dan teman anda dapat berkomunikasi melalui pipa tersebut. Seperti itulah prinsip dasar dari serat optik atau yang biasa dikenal dengan nama fiber optic cable.
fiber-optic-fiber
Sebuah kabel fiber optik terbuat dari serat kaca murni, sehingga meskipun kabel mempunyai panjang sampai beratus2 meter, cahaya masih dapat dipancarkan dari ujung ke ujung lainnya. Helai serat kaca tersebut didesain sangat halus,ketebalannya kira-kira sama dengan tebal rambut manusia. Helai serat kaca dilapisi oleh 2 lapisan plastik (2 layers plastic coating) dengan melapisi serat kaca dengan plastik, akan didapatkan equivalen sebuah cermin disekitar serat kaca.
Cermin ini menghasilkan total internal reflection (refleksi total pada bagian dalam serat kaca). Sama seperti jika kita berada pada ruangan gelap dengan sebuah jendela kaca, kemudian anda mengarahkan cahaya senter 90 derajat tegak lurus dengan kaca , maka cahaya senter akan tembus ke luar ruangan. Akan tetapi jika cahaya senter tersebut diarahkan (ke jendela berkaca) dengan sudut yang rendah (hampir paralel dengan cahaya aslinya), maka kaca tersebut akan berfungsi menjadi cermin yg akan memantulkan cahaya senter ke dalam ruangan. demikian pada serat optik, cahaya berjalan melalui serat kaca pada sudut yang rendah.
fiber-optic-ir
Untuk mengirimkan percakapan2 telepon melalui serat optik, suara analog di rubah menjadi sinyal digital. Sebuah laser transmitter pada salah satu ujung kabel on/off untuk mengirimkan setiap bit sinyal. System fiber optik Modern dengan single laser bisa mentransmitkan jutaan bit/second. Atau bisa dikatakan laser transmitter on dan off jutaan kali /second.
System terbaru laser transmitter dapat mentransmitkan warna2 yang berbeda untuk mengirimkan beragam sinyal digital dalam fiber optik yang sama.
fiber-optic-transmission
Kabel fiber optik modern dapat membawa sinyal digital dengan jarak kurang lebih 60 mil (sekitar 100 Km). Pada jalur distribusi jarak jauh biasanya terdapat peralatan tambahan (equipment hut) setiap 40-60 mil,yang berfungsi pick-up equipment yang akan menampung, menguatkan sinyal, dan kemudian me- retransmit-kan sinyal ke equipment selanjutnya.
4. Kelebihan dan Kekurangan dari Fiber Optik
Sebagai sebuah penemuan tekbologi, fiber optik mempunyai keuntungan dan kerugian. Berikut adalah keuntungan dari fiber optik:
- Dibandingkan dengan sistem komunikasi jenis lain, cahaya yang merupakan pembawa informasi dalam sistem fiber optik, dapat mengakomodasi banyak volum informasi. Transmisi dalam kisaran giga-plus (billion bits per second). Satu kabel 0,75 inchi dapat menggantikan 20 kabelcoaxial 3.5 inchi konvensional.
- Kabel fiber optik kebal terhadap elektromagnet dan interferensi radio. Karena cahaya digunakan untuk menyampaikan informasi, saluran komunikasi yang berdekatan tidak akan dapat mempengaruhi transmisi
- Saluran FO rnenawarkan tingkat keamanan data yang lebih tinggi daripada sistem konvensional. Hal ini membuat saluran FO sulit untuk disadap dan saluran ini tidak mengeluarkan radiasi.
- Informasi dapat disiarkan ulang dengan jangkauan jarak yang jauh tanpa pengulangan. Generasi baru dari LD dan fiber komplemen, sama halnya dengan penangkap yang sensitif,dapat me-relaydengan jarak jauh tanpa pengulangan.
- Sebuah saluran FO adalah bernilai saat aset dalam keadaan premium, contohnya saluran pipa dalam gedung dapat digunakan sebagai tempat pembawa kabel. Karena kabel FO kecil maka biasanya mudah untuk ditempatkan dibandingkan dengan kabel konvensional.
Kerugian fiber optik tidak sebanyak keuntungannya. Beberapa faktor membatasi efektivitas kabel FO. Seperti jenis sistem komunikasi lainnya, sistem ini mungkin sinyalnya kurang kuat, hal ini disebabkan karena faktor fisik ataupun material. Dispersi dapat mempengaruhi volum informasi yang dapat diakomodasi. Tidak seperti halnya dengan kawat atau plastik, fiber juga lebih sulit untuk disambung. Dan sambungan akhir dari kabel fiber harus benar-benar akurat untuk menghindari transmisi yang tidak jelas. Komponen FO mahal dan membutuhkan biaya ekstra dalam pengaplikasian yang lebih spesifik.
5. Aplikasi Fiber Optik
FO adalah medium yang atraktif untuk industri produksi radio. Desain yang ringan dan karakterisitik transmisinya dapat membuat fiber optik sebagai alat yang bernilia dalam dunia produksi. Kapasiitas informasi fiber membuatnya kandidat yang ideal untuk studio televisi all-digital. Sistem FO dapat menangani digitalisasi kualitas sinyal broadcast yang menghasilkan miliaran bits persecond.
Selain itu sistem FO, juga digunakan untuk menciptakan Local Area Network (LAN) yang efesien dan mempunyai kapasitas tinggi. Saluran FO tidak hanya dapat mengakomodasi audio dan video tetapi juga data komputer. Fiber juga menyediakan saluran data dengan kecepatan tinggi.
Selain konfigurasi saluran darat, AT&T, mengawali konsorsium international yang mengembangkan fiber optik bawah laut transatlantik pertama yang menghubungkan Amerika Serikat dan Eropa. Panjang sistem, yang disebut TAT-8 ini lebih dari 3000 nautical mil. TAT-8 didesain untuk membawa informasi yang beragam. Seperti aplikasi baru lainnya, TAT-8 juga tidak luput dari masalah. Baru-baru ini pengguna TAT-8 mengalami gangguan akibat kerusakan kabel yang disebabkan penangkapan ikan.
Sekilas kabel bawah laut dan dan saluran darat jarak jauh terlihat usang dalam cahaya satelit komunikasi. Jika transmisi satelit bergantung pada kondisi atmosfer, dan tidak dapat dipisahkan dari jalur lalu lintas satelit itu sendiri. Maka, sambungan FO tidak bergantung pada hal-hal demikian. Fiber sebagai material yang sensitif dapat menjadi saluran yang lebih aman. Faktanya, fiber oprik dan satelit adalah sebuah suplemen dan komplemen. Masing-masing mempunyai kekuataannya sendiri dan yang terpenting keduanya akan terus mendukung sistem komunikasi.
Teknologi fiber optik juga telah diadopsi untuk aplikasi lain. Dalam dunia kedokteran, kabel fiber optik dapat digunakan dalam beberapa jenis operasi laser. Fiber dapat bertindak sebagai alat yang pembawa cahaya. Fiber dapat membentuk ’fiberscope’, alat ini terdiri dari dua fiber optikal. Satu sebagai pembawa cahaya ke jaringan dan lainya mentransmit gambar ke pengamat. Dokter menggunakan alat tersebut untuk melihat bagian dalam tubuh manusia.
Industri komunikasi mengalami perubahan yang cepat. Satu di antara tujuan industi tersebut adalah menyediakan para penggunanya kontrol lebih terhadap pilihan program. Istilah yang diasosiasikan dengan pekembangan ini adalah Video-on-demand (VOD). Singkatnya, di VOD kita dapat memilih program apa yang akan kita tonton, mulai dari sport sampai film. Tetapi kita harus membayar apa yang kita tonton, istilahnya pay-per-view (PPV). Fungsi VOD seperti tempat penyewaan video, yang menyediakan beragam tayangan dan kita hanya menonton yang kita suka. VOD merefleksikan perkembangan teknologi komunikasi, khususnya televisi yang tidak lagi melayani kebutuhan secara massa tetapi sudah pada tingkat individu.
Fiber optik (FO) dapat digunakan sebagai elemen penting (backbone) dalam sistem informasi dan hiburan yang berbasis digital ini. Penggunaan FO didukung oleh perusahaan kabel dan telepon. Satelit juga berperan penting dalam penyediaan layanan untuk program yang demikian. Jadi, tiga pemain yang terlibat dalam penyampaian informasi ini adalah kabel, satelit dan perusahaan telepon. Mereka saling melengkapi sehingga bisa menampilkan tayangan yang berbasis VOD.
6. Kesimpulan
Teknologi jaringan fiber-optik (FO) telah menunjukkan pengaruh besar terhadap sistem komunikasi di dunia. Seperti yang telah dibuktikan produk-produk teknologi pendukungnya, sistem ini berhasil membuat perkembangan luar biasa dalam bidang koneksi telepon, baik dalam cakupan nasional maupun internasional. Di masa yang akan datang, teknologi ini juga menjanjikan perubahan dalam hal ‘bagaimana kita menonton televisi’ dan ‘bagaimana kita menerima dan menggunakan informasi’. Secara keseluruhan, perkembangan teknologi ini lebih tepat dikatakan sebagai evolusi daripada revolusi. Hal ini karena pada dasarnya, pengembangan dan modernisasi aplikasi teknologi komunikasi dilakukan secara bertahap; berkelanjutan; dengan mengacu pada konsep digital yang telah ada sebelumnya, sehingga menghasilkan siklus teknologi yang rekonstruktif.

modem dan jenis

Modem berasal dari singkatan MOdulator DEModulator. Modulator merupakan bagian yang mengubah sinyal informasi kedalam sinyal pembawa (carrier) dan siap untuk dikirimkan, sedangkan Demodulator adalah bagian yang memisahkan sinyal informasi (yang berisi data atau pesan) dari sinyal pembawa yang diterima sehingga informasi tersebut dapat diterima dengan baik. Modem merupakan penggabungan kedua-duanya, artinya modem adalah alat komunikasi dua arah. Setiap perangkat komunikasi jarak jauh dua-arah umumnya menggunakan bagian yang disebut "modem", seperti VSAT, Microwave Radio, dan lain sebagainya, namun umumnya istilah modem lebih dikenal sebagai Perangkat keras yang sering digunakan untuk komunikasi pada komputer.
Data dari komputer yang berbentuk sinyal digital diberikan kepada modem untuk diubah menjadi sinyal analog. Sinyal analog tersebut dapat dikirimkan melalui beberapa media telekomunikasi seperti telepon dan radio.
Setibanya di modem tujuan, sinyal analog tersebut diubah menjadi sinyal digital kembali dan dikirimkan kepada komputer. Terdapat dua jenis modem secara fisiknya, yaitu modem eksternal dan modem internal.

Jenis-jenis modem

  • Modem 3GP
  • Modem GSM
  • Modem analog yaitu modem yang mengubah sinyal analog menjadi sinyal digital
  • Modem teknologi ADSL (Asymetric Digital Subscribe Line) yang memungkinkan berselancar internet dan menggunakan telepon analog secara berbarengan. Caranya sangat mudah, untuk ADSL diberikan sebuah alat yang disebut sebagai Splitter atau pembagi line. Posisi Splitter ditempatkan di depan ketika line telepon masuk. Artinya anda tidak boleh mencabangkan line modem untuk ADSL dengan suara secara langsung. Alat Splitter berguna untuk menghilangkan gangguan ketika anda sedang menggunakan ADSL modem. Dengan Splitter keduanya dapat berjalan bersamaan, sehingga pengguna dapat menjawab dan menelpon seseorang dengan telepon biasa. Di sisi lain, pengguna tetap dapat terkoneksi dengan internet melalui ADSL modem.
  • Modem kabel yaitu modem yang menerima data langsung dari penyedia layanan lewat TV Kabel
  • Modem CDMA

swich dan cara kerjanya

Switch jaringan (atau switch untuk singkatnya) adalah sebuah alat jaringan yang melakukan bridging transparan (penghubung segementasi banyak jaringan dengan forwarding berdasarkan alamat MAC).
Switch jaringan dapat digunakan sebagai penghubung komputer atau router pada satu area yang terbatas, switch juga bekerja pada lapisan data link, cara kerja switch hampir sama seperti bridge, tetapi switch memiliki sejumlah port sehingga sering dinamakan multi-port bridge.

Cara Kerja Switch

Switch dapat dikatakan sebagai multi-port bridge karena mempunyai collision domain dan broadcast domain tersendiri, dapat mengatur lalu lintas paket yang melalui switch jaringan. Cara menghubungkan komputer ke switch sangat mirip dengan cara menghubungkan komputer atau router ke hub. Switch dapat digunakan langsung untuk menggantikan hub yang sudah terpasang pada jaringan.
Ada beberapa jenis Switch yang beredar di pasaran, yang bekerja di Layer 2 dan Layer 3 pada lapisan OSI.

ISDN (Integrated Services Digital Network) Switch atau yang dikenal sebagai istilah Frame relay switch over ISDN yang biasanya terdapat pada Service Provider bekerja seperti halnya switch, tapi memiliki perbedaan yaitu interface yang di gunakan berupa ISDN card atau ISDN router.

Port uplink adalah sebuah port dalam sebuah hub atau [[switch jaringan]|switch]] yang dapat digunakan untuk menghubungkan hub/switch tersebut dengan hub lainnya di dalam sebuah jaringan berbasis teknologi Ethernet. Dengan menggunakan uplink port, hub-hub pun dapat disusun secara bertumpuk untuk membentuk jaringan yang lebih besar dengan menggunakan kabel Unshielded Twisted Pair yang murah. Jika memang hub yang digunakan tidak memiliki port uplink, maka kita dapat menggunakan kabel UTP yang disusun secara crossover.

apa itu router

Router adalah sebuah alat jaringan komputer yang mengirimkan paket data melalui sebuah jaringan atau Internetrouting. Proses routing terjadi pada lapisan 3 (Lapisan jaringan seperti Internet Protocol) dari stack protokol tujuh-lapis OSI. menuju tujuannya, melalui sebuah proses yang dikenal sebagai 

fungsi router

Router berfungsi sebagai penghubung antar dua atau lebih jaringan untuk meneruskan data dari satu jaringan ke jaringan lainnya. Router berbeda dengan switch. Switch merupakan penghubung beberapa alat untuk membentuk suatu Local Area Network (LAN).

Analogi Router dan Switch
Sebagai ilustrasi perbedaan fungsi dari router dan switch merupakan suatu jalanan, dan router merupakan penghubung antar jalan. Masing-masing rumah berada pada jalan yang memiliki alamat dalam suatu urutan tertentu. Dengan cara yang sama, switch menghubungkan berbagai macam alat, dimana masing-masing alat memiliki alamat IP sendiri pada sebuah LAN.
Router sangat banyak digunakan dalam jaringan berbasis teknologi protokol TCP/IP, dan router jenis itu disebut juga dengan IP Router. Selain IP Router, ada lagi AppleTalk Router, dan masih ada beberapa jenis router lainnya. Internet merupakan contoh utama dari sebuah jaringan yang memiliki banyak router IP. Router dapat digunakan untuk menghubungkan banyak jaringan kecil ke sebuah jaringan yang lebih besar, yang disebut dengan internetwork, atau untuk membagi sebuah jaringan besar ke dalam beberapa subnetwork untuk meningkatkan kinerja dan juga mempermudah manajemennya. Router juga kadang digunakan untuk mengoneksikan dua buah jaringan yang menggunakan media yang berbeda (seperti halnya router wireless yang pada umumnya selain ia dapat menghubungkan komputer dengan menggunakan radio, ia juga mendukung penghubungan komputer dengan kabel UTP), atau berbeda arsitektur jaringan, seperti halnya dari Ethernet ke Token Ring.
Router juga dapat digunakan untuk menghubungkan LAN ke sebuah layanan telekomunikasi seperti halnya telekomunikasi leased line atau Digital Subscriber Line (DSL). Router yang digunakan untuk menghubungkan LAN ke sebuah koneksi leased line seperti T1, atau T3, sering disebut sebagai access server. Sementara itu, router yang digunakan untuk menghubungkan jaringan lokal ke sebuah koneksi DSL disebut juga dengan DSL router. Router-router jenis tersebut umumnya memiliki fungsi firewall untuk melakukan penapisan paket berdasarkan alamat sumber dan alamat tujuan paket tersebut, meski beberapa router tidak memilikinya. Router yang memiliki fitur penapisan paket disebut juga dengan packet-filtering router. Router umumnya memblokir lalu lintas data yang dipancarkan secara broadcast sehingga dapat mencegah adanya broadcast storm yang mampu memperlambat kinerja jaringan.

Jenis-jenis router

Secara umum, router dibagi menjadi dua buah jenis, yakni:
  • static router (router statis): adalah sebuah router yang memiliki tabel routing statis yang di setting secara manual oleh para administrator jaringan.
  • dynamic router (router dinamis): adalah sebuah router yang memiliki dab membuat tabel routingrouter dinamis, dengan mendengarkan lalu lintas jaringan dan juga dengan saling berhubungan dengan lainnya.   

Router versus Bridge

Cara kerja router mirip dengan bridge jaringan, yakni mereka dapat meneruskan paket data jaringan dan dapat juga membagi jaringan menjadi beberapa segmen atau menyatukan segmen-segmen jaringan. Akan tetapi, router berjalan pada lapisan ketiga pada model OSI (lapisan jaringan), dan menggunakan skema pengalamatan yang digunakan pada lapisan itu, seperti halnya alamat IP. Sementara itu, bridge jaringan berjalan pada lapisan kedua pada model OSI (lapisan data-link), dan menggunakan skema pengalamatan yang digunakan pada lapisan itu, yakni MAC address.
Lalu, kapan penggunaan bridge jaringan dilakukan dan kapan penggunakan router dilakukan? Bridge, sebaiknya digunakan untuk menghubungkan segmen-segmen jaringan yang menjalankan protokol jaringan yang sama (sebagai contoh: segmen jaringan berbasis IP dengan segmen jaringan IP lainnya). Selain itu, bridge juga dapat digunakan ketika di dalam jaringan terdapat protokol-protokol yang tidak bisa melakukan routing, seperti halnya NetBEUI. Sementara itu, router sebaiknya digunakan untuk menghubungkan segmen-segmen jaringan yang menjalankan protokol jaringan yang berebeda (seperti halnya untuk menghubungkan segmen jaringan IP dengan segmen jaringan IPX.) Secara umum, router lebih cerdas dibandingkan dengan bridge jaringan dan dapat meningkatkan bandwidth jaringan, mengingat router tidak meneruskan paket broadcast ke jaringan yang dituju. Dan, penggunaan router yang paling sering dilakukan adalah ketika kita hendak menghubungkan jaringan kita ke internet.

perbedaan hardisk ata dan sata

1. ATA

Kebanyakan type drive yang digunakan oleh para pengguna komputer adalah tipe ATA (dikenal dengan IDE drive). Tipe ATA di buat berdasarkan standart tahun 1986 dengan menggunakan 16 bit paralel dan terus berkembang dengan penambahan kecepatan transfer dan ukuran sebuah disk. Standart terakhir adalah ATA-7 yang dikenalkan pertama kali pada tahun 2001 oleh komite T13(komite yang bertanggung jawab menentukan standart ATA). Tipe ATA-7 memiliki data transfer sebesar 133 MB/sec. kemudian selama tahun 2000 ditentukan standar untuk paralel ATA yang memiliki data rate sebesar 133 MB/sec, tapi paralel ATA terdapat banyak masalah hal singnal timin, EMI(electromognetic interference) dan intergitas data. Kemudian para industri berusaha menyelesaikan masalah yang di timbulkan oleh paralel ATA dan di buat standar baru yang di sebut Serial ATA (SATA)

ATA (Advanced Technology Attachment) menggunakan 16 bit paralel digunakan untuk mengontrol peralatan komputer, dan telah di pakai selama 18 tahun lebih sebagai standar. Perbedaan SATA dan ATA yang paling mudah adalah kabel data dan power yang berbeda.
Standar ATA, seperti 200GB Western Digital Model, mempunyai dua inch kabel ribbon dengan 40 pin koneksi data dan membutuhkan 5V untuk setiap pin dari 4 pin connection. Sedangkan SATA seperti 120 GB western Digital Model mempunyai lebar setengah inci, 7 connector data connection sehingga lebih tipis dan mudah untuk mengatur kebel datanya. Kabel data SATA mempunyai panjang maksimal 1 meter (39.37 inci) lebih panjang dari ATA yang hanya 18 inci.

2. SATA

SATA dengan 15 pin kabel power dengan 250 mV, tampaknya memerlukan daya lebih banyak di bandingkan dengan 4 pin ATA, tapi dalam kenyataanya sama saja. Dan kemampuan SATA yang paling bagus adalah tercapainya maximum bandwith yang mungkin yaitu sebesar 150 MB/sec
Keuntungan lainya dari SATA adalah SATA di buat dengan kemampuan hot-swap sehinga dapat mematikan dan menyalakan tanpa melakukan shut down pada sistem komputer.
Sedangkan dalam harga, drive SATA lebih mahal sedikit di bandingkan drive ATA , kesimpulanya SATA lebih memiliki keuntungan dibandingkan ATA dalam connector, tenaga, dan yang paling penting performanya. Sekarang standar ATA telah mulai di tinggalkan dan produsen memilih standart SATA.

IDE (Integrated Drive Electronics) merupakan standar interface antara bus data motherboard komputer dengan disk storage. IDE interface di buat berdasarkan IBM PC Industry Standard Architecture (ISA) 16-bit bus. Interface dari IDE adalah interface untuk storage devices yang dapat teringrasi untuk disk atau CD-ROM drive. Walaupun IDE merupakan teknologi yang umum, kebanyakan orang menggunakan istilah IDE untuk merujuk pada spesifikasi ATA. Sedangkan AHCI (Advance Host Controller Interface) merupakan mekanisme hardware yang membolehkan software untuk berkomunikasi dengan SATA seperti host bus adapter yang didesain untuk hot-plugin dan native command queuing(NCQ) yang dapat menaikan kemampuan komputer/sistem/hard disk terutama dalam lingkungan multi tasking dengan cara membolehkan drive untuk menjalankan perintah baca tulis yang dikirim secara acak dengan tujuan untuk optimalisasi perpindahan head pada proses pembacaan. AHCI telah di dukung oleh berbagai sistem operasi seperti Windows Vista dan Linux kernel 2.6.19.

prosesor laptop

Prosesor untuk laptop sangat berbeda dengan Prosesor untuk Komputer PC (Desktop) biasa. Perbedaan sangat kentara dalam segi pemakaian daya (power) dimana Prosesor Laptop didesain untuk mengkonsumsi daya seminimal mungkin dan seefektif mungkin, mengingat Laptop tidak selamanya terhubung ke sumber listrik, tapi tanpa mengorbankan segi performa. Dalam arti lain, Prosesor Laptop dibuat agar bisa menghemat konsumsi daya, tapi dengan performa yang baik.
Saat anda akan membeli sebuah laptop, ada baiknya cek dan re-chek dulu Prosesor yang tertanam di laptop tersebut, karena perbedaan prosesor akan sangat berpengaruh sekali terhadap kinerja dan konsumsi daya dari laptop tersebut. Dan berikut ini petunjuk singkat tentang berbagai jenis prosesor laptop, yang sesuai dengan peruntukkannya.

Laptop Kelas Ekonomi
Laptop kelas ini dibuat untuk memenuhi kebutuhan dan fungsi berkomputer secara portabel (mobile) tapi dengan rentang harga yang relatif terjangkau alias low cost. Prosesor yang digunakan pada Laptop kelas ekonomi, didesain untuk mampu melakukan aktivitas standar berkomputer, seperti menulis laporan, browsing, memutar lagu sampai kepada memutar dvd (film). Satu hal yang menjadi kekurangan Prosesor untuk laptop kelas ini, adalah tidak akan mampu memainkan dan menjalankan game maupun aplikasi grafik terkini dengan sempurna dan performa yang terbaik. Beberapa contoh Prosesor untuk kelas ini adalah :
  • AMD Athlon X2 QL-60
  • AMD Athlon 64 X2 TK-57
  • AMD Turion 64 X2 RM-72
  • AMD Turion 64 X2 TL-60
  • AMD Turion X2 Ultra ZM-82
  • Intel Core 2 Duo P7350
  • Intel Core 2 Duo T5800
  • Intel Core 2 Duo T7300
  • Intel Core 2 Duo T8200
  • Intel Pentium Dual-Core T3400

UltraPortables
Laptop kelas ini didesain untuk orang yang mobile, alias orang yang sering bepergian, dimana dia tidak selalu terhubungan dengan sumber daya (listrik) dan menginginkan sebuah system yang tidak terlalu boros dalam mengkonsumsi daya. Makanya laptop jenis ini, terkadang ‘mengkorbankan’ beberapa fitur maupun aksesoris tambahan pada laptop, seperti tanpa ada DVD Player. Singkatnya UltraPortables laptop, dibuat hanya untuk kebutuhan yang sangat mendasar dalam berkomputer, seperti untuk menulis laporan, mengirim email atau sekedar untuk presentase. Beberapa prosesor untuk laptop jenis adalah :
  • AMD Turion 64 X2 TL-66
  • Intel Core 2 Duo L7500
  • Intel Core 2 Duo U7500
  • Intel Core 2 Duo SL9300
  • Intel Core 2 Duo SP9300
  • Intel Core 2 Duo SU9300

Netbooks
Versi yang lebih mini dan lebih murah dari UltraPortables dengan fitur yang telah banyak dihilangkan/ dihapus juga dengan kemampuan prosesor yang sangat terbatas. Beberapa prosesor untuk jenis Netbooks adalah
  • Intel Atom N270
  • Intel Atom Z520
  • Intel Celeron M 900MHz Ultra Low Voltage
  • VIA C7-M
  • VIA Nano L2100
  • VIA Nano U2300

Pengganti Desktop Komputer
Yang satu ini, laptop yang didesain dengan fitur yang lengkap dan memiliki kemampuan yang setara dengan PC Desktop biasa dan sebagai konsekuensi laptop jenis hadir dengan desain yang lebih besar dibandingkan ultraportabel. Bagi anda penggemar games 3D terkini, maka laptop jenis ini cocok untuk anda, dan beberapa prosesor yang sering digunakan pada laptop jenis ini adalah
  • AMD Turion X2 Ultra ZM-80
  • Intel Core 2 Duo T8300
  • Intel Core 2 Duo T9400
  • Intel Core 2 Quad Q9000
  • Intel Core 2 Extreme QX9300